Algebra 2 - Adding and Subtracting Complex Numbers

Addition and Subtraction of Complex Numbers

When we add or subtract two complex numbers, we add or subtract the real number parts, then add or subtract their imaginary parts and express it in the standard form of a complex number.

Consider two complex numbers z1=a+ib and z2=c+id.

  • Addition: z1+z2=a+ib+c+id=a+c+ib+d
  • Subtraction: z1-z2=a+ib-c+id=a-c+ib-d

Solved Examples

Example 1: Add -5+3i and 15-8i.

Solution: After grouping, we add the real and the imaginary parts separately.

-5+3i+15-8i=-5+15+3i-8i=10-5i

 

Example 2: Find the value of 20-3i+15i.

Solution: 20-3i+15i = 20+15i-3i=20+12i

 

Example 3: Subtract 6-8i from 4+3i.

Solution: 4+3i-6-8i=4+3i-6+8i=4-6+3i+8i=-2+11i

 

Example 4: Simplify -11+35i-35i-11.

Solution: 11+35i-35i-11=11+35i-35i+11=11+11+35i-35i=22

 

Example 5: Subtract 22+7i from 72-5i.

Solution: 72-5i-22+7i=72-5i-22-7i=72-22-5i+7i=52-12i.

Cheat Sheet

  • To add or subtract two complex numbers, we add or subtract the corresponding real and imaginary parts.

Blunder Areas

  • Subtracting z1 from z2 means computing z2-z1 and must not be confused with z1-z2.